
TerraPattern: A Nearest Neighbor Search Service

Manzil Zaheer 1 Guru Guruganesh 1 Golan Levin 2 Alexander Smola 3

Abstract
Creative inquiries through similarity search have
historically offered novel perspectives in many
domains (Broder, 1997; Singh et al., 2017; Kiefer
& Laub, 2013; Ngai et al., 2011; Shin & Kim,
2014). A real-time online nearest neighbor (NN)
search allows artists to expressively use the power
of computation to explore vast datasets. We de-
velop, Terrapattern, a prototype for visual query-
by-example in satellite imagery. Terrapattern is
an interface for finding “more like this, please”
images in satellite photos: when a user selects
an interesting tile on Terrapattern’s map, the sys-
tem finds other locations that look similar. This
tool has been used by artists, citizen scientists,
and hobbyists alike to spot and explore emerging
trends, and has been well received by the media
and public at large.

To facilitate a fast online NN search, we develop a
tree data structure–Stable Greedy Tree (SG Tree)–
which allows for almost linear time construction
and logarithmic query time under real world as-
sumptions. SG Tree is amenable to parallelization
and distribution which greatly enhances its ap-
peal over existing approaches such as NNet trees
and Cover Trees and is essential for the scale
required on large datasets. Moreover, the data
structure adapts to the intrinsic dimension of the
data, which is particularly beneficial when the
feature vectors come from neural networks that
have high euclidean dimensions but often lie on
a (significantly) smaller dimensional manifold.
The proposed method significantly outperforms
existing NN search tools in construction time on
many real world data-sets and is well suited for
interactive queries.

1. Introduction
There has never been a more exciting time to observe hu-
manity and understand it’s impact on the world. Recognition

1Google Research, Mountain View CA 2Carnegie Mellon Uni-
versity, Pittsburgh PA 3Amazon Web Services, Palo Alto CA. Cor-
respondence to: Manzil Zaheer <manzil@zaheer.ml>.

of such patterns through similarity search has helped us in
various domains: wildlife tracking and identifying conflicts
(Suju & Jose, 2017), discovering survivors in battlefield
dynamics (Han et al., 2015), detecting fraudulent online be-
havior (Ngai et al., 2011), diagnosis using medical histories
(Korn et al., 1996), etc. We aim to help people discover such
patterns and repeat this success story using satellite data.

In light of this, we present Terrapattern, a prototype to
demonstrate a workflow by which lay users - such as jour-
nalists, citizen scientists, humanitarian agencies, and others
- can easily search for visually consistent “patterns of inter-
est”. Our goal is to provide a geospatial software tool that
makes it easy for people, who may lack expertise in machine
vision, 1) to specify an image that they are interested in and
automatically find similar examples , and 2) to provide the
locations of those instances in a common data format that
easily allows for further examination. After its launch, Ter-
rapattern was well received by the media and the public at
large (see (Coldeway, 2016; Ryan, 2016; Robinson, 2016)),
with over 9.79M+ human queries till now.

Terrapattern consists of two components: a feature extrac-
tion service based on Deep Nets (see Section 4) and the main
contribution of this paper, a nearest neighbor (NN) search.
To be popular in the aforementioned task, such a NN search
service would have to satisfy the following requirements:

• Online: Be responsive for interactive queries by artists,
i.e. be able to handle online (not batch mode) queries
over large high dimensional satellite imagery datasets in
real-time. This rules out many efficient batch-mode NN
search service running on GPUs (Johnson et al., 2017).
• High Recall: Must have high recall as humans are the

direct consumers of the results of the NN search. Further-
more, the number of neighbors needed would be small.
The super-fast approximate NN search methods work best
when they must output a high number of neighbors at mod-
erate recall (e.g. as an intermediary step of an automated
ML pipeline), and thus are not applicable.
• Fast Construction: Allows for fast construction/index-

ing. For example, artists can load various datasets and
start playing with it immediately.
• Distributed: For large datasets that do not fit on a single

machine, the NN search service should be distributable
over multiple machines, without high cost of synchroniza-
tion in case of updates.

TerraPattern: A Nearest Neighbor Search Service

• Malleable: Possible to modify the search index (in-
sert/delete points). This is useful, for example, when
a higher resolution satellite imagery becomes available
for certain region.

Since none of the existing NN search service meets all of our
requirements, we develop a tree data structure Stable Greedy
Trees (SG Tree). The proposed tree data structure allows
for almost linear time construction and fast query time for
exact NN search under real world assumptions (Section 2.3).
Perhaps the most surprising features, are that SG Tree is
extremely simple and as a result, our construction time is
orders of magnitude faster than any comparable algorithm.

At a high level, the SG Tree tries to create a hierarchical tree
where each node performs a ”coarse” clustering. The centers
of these ”clusters” become the children and subsequent in-
sertions are recursively performed on these children. When
performing the NN query, we prune out solutions based on
a subset of the dimensions that are being queried. This is
particularly useful when trying to find the nearest neighbor
in highly clustered subset of the data, e.g. when the data
comes from a recursive mixture of Gaussians or more gener-
ally Time-Marginalized Coalescent. The effect of these two
optimizations is that our data structure is extremely simple,
highly parallelizable and is comparable in performance to
existing NN implementations on many data-sets.

Another appealing aspect of our data structure is its sim-
plicity. As a result, it is amenable to theoretical guarantees.
Existing data structures with theoretical guarantees such as
Navigating Net (Krauthgamer & Lee, 2004), Cover Trees
(Beygelzimer et al., 2006), HNSW (Malkov & Yashunin,
2016), P-DCI, (Li & Malik, 2017), RP-tree (Dasgupta &
Sinha, 2013), are either sequential in nature or hide large
constants. We are able to show that SG Tree inherits some of
the nice properties of Cover-Trees and adapts to the intrinsic
dimension of the data. This is particularly beneficial when
the feature vectors come from neural networks that have
high euclidean dimensions but often lie on a (significantly)
smaller dimensional manifold.

2. Stable Greedy Trees
2.1. Definition

Stable Greedy Trees (SG Tree) are defined with respect
to a hyper-parameter γ > 1 over a dataset S in a metric
space with distance d(·, ·). In SG Tree, the data points are
hierarchically arranged where each node corresponds to a
data point p and an associated maximum distance parameter
τ , which will decrease exponentially with the depth of
the node. The rate of decrease is controlled by the hyper-
parameter γ. The sub-tree rooted at any node only contains
data-points which are within τ from the data point p. All
nodes that share a parent (i.e. siblings) are seperated by their

Algorithm 1 Insert a new point into SG Tree

1: function INSERT(Node n, Point p)
2: # Start with n← root
3: Find child c of n closest in distance to p
4: if d(c, p) < γc.level then
5: if c.max < d(c, p) then
6: c.max← d(c, p)
7: end if
8: Insert(c, p)
9: else

10: Assign p as child of n
11: end if
12: return
13: end function

τ . Nodes at a certain height are said to be in the same level.
An overview of SG Tree is provided in Figure 1. The tree
structure will be more evident from the construction process,
which sequentially inserts the data points from S with first
point being the root. In more detail, each node is contains:

• point: The data point vector
• level: The level of the node in the tree as integer
• max: The upper bound to distance of furthest node in

the current subtree.

Insertion: To insert a node at a given subtree rooted at r at
level l , we find the closest child p. If d(p, q) ≤ γl−1, then
we recursively insert q into the subtree defined at p. On the
other hand, if d(p, q) > γl−1 then we insert it a sibling in
the current level and connect it to the parent at the last level.
This is outlined in Algorithm 1.

Query: To find the closest neighbor to a query point, we
traverse down the levels of the SG Tree starting from the
root and maintain the current best node seen. At each level,
we only maintain nodes that could still contain the nearest
neighbor to a given query point p. In particular, a node q can
be eliminated if none of its descendants can be closer than
the current best. A lower bound on the distance between
p and closest descendent of q can be worked out to be
d(p, q)−qmax, by using triangle inequality and the maximum
distance parameter. Thus, for eliminating p it suffices to
check if this lower bound is worse than current best distance.
We make this formal in Algorithm 2.

2.2. Connections to Net Trees and Cover Trees

SG Tree is inspired by and closely related to Cover Trees
introduced by Beygelzimer et al. (2006). Cover trees form
a hierarchical data structure that allows fast retrieval in
logarithmic time when the metric has a small expansion con-
stant (defined below). In particular, it allows for O(n log n)
construction time, O(log n) retrieval, and it only depends

TerraPattern: A Nearest Neighbor Search Service

Figure 1. Overview of proposed hierarchical data structure that allows fast retrieval in log time.

Algorithm 2 Find nearest neighbor in SG Tree

1: function NN(Node r, Query point p, Candidate NN n)
2: # Start with r ← root and n← root
3: if d(p, r) < d(p, n) then
4: n← r
5: end if
6: for each child q of r do
7: if d(p, q)− q.max < d(p, n) then
8: n← NN(q, p, n)
9: end if

10: end for
11: return n
12: end function

polynomialy on the expansion rate. Moreover, the degree of
all internal nodes is well controlled.

Cover trees are defined as an infinite succession of levels Sl
with l ∈ Z. Each level l contains (a nested subset of) the
data with the following properties:

• Nesting property: Sl−1 ⊆ Sl.
• Separation property: All p, q ∈ Sl satisfy d(p, q) ≥ γl.
• All q ∈ Sl−1 have a parent in p ∈ Sl, possibly with
p = q, with d(p, q) ≤ γl.

The cover tree data structure compresses each node so each
p is represented only once: it is only stored in the largest
level l for which p ∈ Sl. This data structure has a number
of highly desirable properties, as proved in Beygelzimer
et al. (2006). SG Tree also satisfies all of those properties
except for the separation property: it satisfies the separation
property locally (i.e. only for siblings) instead of globally
(i.e. for all nodes in Sl). In that sense, SG Tree changes this
property from being a global one to a local one. This slight
modification will have huge repercussions in performance,

as it will allow us to insert in parallel and distribute nearest
neighbor search.

Another very related data structure is Net Trees introduced
by Krauthgamer & Lee (2004). Their data structure is also a
hierarchical tree that has stronger properties. In fact, (Jahan-
seir & Sheehy, 2016) showed that Net Trees capture Cover
Trees for an appropriate choice of parameters. They get
stronger guarantees in part by maintaining epsilon nets at
each level which are constructed greedily, and maintain lists
of relatives at each point that maintain close neighbors. SG
Tree also builds an epsilon net, however only on the points
that are in a ball around some node. Once again, we substi-
tute a global property for a local one. These changes lose
many of the theoretical properties but we gain by having a
simple implementation that can be optimized for modern
architectures.

2.3. Structural Properties

In this section, we show that the SG Tree shares some of
the properties of Cover Trees in terms of tree structure and
construction time.

Definition 1. Let δmax := maxp,q∈S ||p− q|| denote the
maximum distance between any two points in S and δmin :=
minp 6=q∈S ||p− q|| denote the minimum distance between
any two points. We define the aspect ratio of the metric to
be ∆ := δmax/δmin.

Theorem 1. The height of the SG Tree is at mostO(log(∆))
where ∆ is the aspect ratio of the metric.

Proof. Observe that the deepest level is at least
logγ(δmin/2) as all balls of radius δmin/2 are disjoint. The
top level is at most logγ(2 · δmax) as all points are at most
δmax apart. The total height of the tree is at most the differ-
ence in these levels: O(log(δmax

δmin
)).

TerraPattern: A Nearest Neighbor Search Service

We use the definition of expansion constant α and the fol-
lowing lemmas from Beygelzimer et al. (2006).

Definition 2. The expansion constant α is defined as small-
est α ≥ 2 such that |B(p, 2r)| ≤ α · |B(p, r)| for all p ∈ S
and r ≥ 0 where B(p, r) denotes a ball of radius r around
the point p.

Lemma 2. The maximum degree of any node in this tree is
at most α3.

Proof. Let r be a node at level l and let c1, . . . , ct be its
children. Each ci creates a disjoint ball of radius γl−1/2 as
we know that d(ci, cj) ≥ γl−1. WLOG let c1 be the ball
that contains the least number of points in a ball of radius
B(c1, γ

l−1/2). Observe that B(c1, γ
l−1/2) ⊆ B(r, γl) ⊆

B(p, 2 ·γl). Since the larger ball is at most 4 ·γ times bigger
than the smaller ball, and we choose γ < 2, we can bound
the number of total points by the expansion constant. In
particular, |B(p, 2 · γl)| ≤ α3 · |B(p, γl−1/2)|. Since we
chose p1 so that B(p1, γ

l−1/2) to have the least number of
points, we know that there can be at most α3 such nodes.

Corollary 3. The time to insert a new point p is α3 log(∆).

Proof. This is an easy consequence of Lemma 2 and Theo-
rem 1. Upon insertion, we query all the children of a node
which is at most α3 and proceed to the next level. Since
there are at most log(∆) levels and each node has at most
α3 children, this gives us the required bound.

2.4. Analysis and Extensions

As we do not have a global separation property, this severely
limits our ability to analyze the tree under a worst case
model. Therefore we analyse SG Tree under a generative
model, namely Time-Marginalized Coalescent (TMC) Pro-
cess. TMC is a popular generative process for modelling
hierarchical data (Kingman, 1982b;a; Boyles & Welling,
2012; Teh et al., 2008; Vikram et al., 2019). TMC defines a
distribution over binary trees. In this model, we have binary
tree together with time labels associated with each node, i.e.
formally we have a triplet (V,E, T) where V is the set of
nodes, E is the set of edges, and the time labels is given by a
function τ : V → [0, 1] where we denote tv = τ(v). In par-
ticular, we will deal with a special case of the TMC model
which we call recursive Gaussian Mixture Model (rGMM).
We formally state this model in the Appendix D. which
is a special case of Time-Marginalized Coalescent process
(Kingman, 1982b; Boyles & Welling, 2012). Informally, it
creates a tree structure whose leafs denote the cluster cen-
ters. To generate a new point, one simply randomly walks
from the root to the leaf, and then outputs a point according
to the Gaussian whose parameters are determined by the
leaf. We give a formal description in Appendix D.

Lemma 4. Given n points from a rGMM(c, log n), and
query a new points q drawn from the same rGMM distribu-
tion, SG Tree will take O(c log n) time to find the closest
neighbor.

To make the analysis more tractable, we make a slight as-
sumption of the insertion procedure. In particular, we as-
sume that the nodes are inserted in decreasing order of level.
It is easy to ensure the above if the insertions are done in
batch mode and we find that it only incurs a small increase
in construction time.

By ensuring that the nodes are inserted in decreasing order
of level, we guarantee that the children of a particular node,
partition the remaining points according to the Voronoi Par-
tition. I.e. all the grandchildren are connected to the child
that they are closest to. Thus, they form an actually cluster-
ing based on the children as the centers. We defer the proof
of Theorem 4 to Appendix D.

Extension to some improper distances Apart from find-
ing NN according to L2 distance in Euclidean space, there
are other popular naturally occurring criteria that are not
proper metrics such as: angular distance, maximum cosine
similarity or maximum inner product search. These crite-
ria do not obey triangle inequality, so SG Tree cannot be
directly used. Following Ram & Gray (2012) and Bachrach
et al. (2014), we can show that SG Tree can be used for even
such improper distances by performing suitable and cheap
transformations of the data points.

• Maximum Cosine Similarity Search (MCSS): Instead of
inserting data points xi in SG Tree, insert normalized
version x̃i = xi/‖xi‖. Performing NN search in `2-
distance is equivalent to MCSS as:

NN(q|x̃) = argmin
i
‖x̃i − q‖ = argmin

i
‖x̃i − q‖2

= argmin
i
‖x̃i‖2 + ‖q‖2 − 2〈x̃i, q〉

= argmax
i
〈x̃i, q〉 = argmax

i

〈xi, q〉
‖xi‖‖q‖

= MCSS(q|x)

• Maximum Inner Product Search (MIPS): As before, we
will insert transformed points in SG Tree. Assume, we can
have an upper bound u for the L2 norm, i.e. u ≤ ‖x‖, ∀x.
Instead of inserting original data points xi, we insert the
augmented data points x̃i = [xi;

√
u2 − ‖xi‖2] in SG

Tree. The query vector q is also modified as q̃ = [q; 0].
Now performing NN search in L2 distance with modified
query is equivalent to MIPS for original query as:

TerraPattern: A Nearest Neighbor Search Service

NN(q̃|x̃) = argmin
i
‖x̃i − q̃‖ = argmin

i
‖x̃i − q̃‖2

= argmin
i

u2 + ‖q‖2 − 2〈xi, q〉

= argmax
i
〈xi, q〉 = MIPS(q|x)

2.5. Deployment

We perform a lot of empirical experimentation and find
our simple data structure SG Tree performs competitively.
We outline several important heuristics that improve perfor-
mance significantly for SG Tree as well as other baseline
data-structures like Cover Tree. We state these heuristics
below and provide some theoretical justification for them.

Initialization Heuristic We mention a heuristic that
makes SG Tree (and cover trees as well) more balanced
and improves their performance: Start with a sample of the
data points representative of the data distribution. Find the
point closest to the (empirical) mean in this estimate. Use
this point as the root of the tree. Next, insert remaining
points from the sample in descending order of the distance.
Despite slight additional work at the beginning, this heuris-
tic reduces both the overall construction time and query
search time.

Empirically, we believe that this heuristic allows top layers
of the tree to quickly spread out, effectively performing a
coarse clustering of the the data and allowing more effective
pruning during search.

Faster Rejection Heuristics While performing query
search, one of the most expensive operations is the actual
distance computation. Most theoretical papers treat this
as an atomic operation which is not a valid assumption
in practice. We introduce the following simple heuristic
that helps to speed up the nearest neighbor search con-
siderably. In Line 7 of Algorithm 2, we first check if
d1/2(p, q) − q.max < d(p, n) where d1/2(p, q) evaluates
the distance between p and q restricted to the (first) half of
the n coordinates.

Parallelized Construction The main advantage of SG
Tree over the theoretically guaranteed, cover trees come
from absence of a global separation constraint, which makes
parallelization easy. To optimally use a modern heavily
multi-cored CPU, we should insert a batch of points in
parallel using the threadpool. For example,in a cover tree, if
any worker thread inserts a point, every other worker thread
has to ensure that the inserted point does not violate the
global separation property for their point. In SG Tree, the
worker does not need to worry about modifications to the
tree happening at places other than current node because
separation property needs to be only maintained locally
among siblings. Even if current node is being modified,
the worker does not need to discard any work, but only has

Figure 2. A natural distributed implementation of SG Tree. Multi-
ple replicas can be maintained cheaply, i.e. with low synchroniza-
tion cost as modifications to top layers are rare by Lemma 5.

to account for the newly inserted point. Thus, an efficient
construction for SG Tree can be implemented in a work-
stealing Fork/Join framework.

In other methods, like HNSW, RP-Trees, etc. bulk of the
work can also be parallelized, but the total work needed
is often much higher, as seen from empirical study (App.
Table 1). For example, building small world graphs in worst
case is O(n2) (Fu et al., 2017), and unknown for others.

Distributed high throughput implementation For large
scale data, such as satellite imagery data of whole earth (¿
8TB), that do not fit in memory of a single computer, one
resorts to distribution across multiple machines. In a natu-
ral setup for a distributed tree search, as first proposed by
Patwary et al. (2016) using kd-trees, first the data would be
spatially partitioned into roughly equal size portions and dis-
tributed among the nodes. Then a global kd-tree containing
representation data points of these spatial partitions would
be constructed and would be used to direct queries/inserts
to appropriate nodes. Results from the polled nodes would
be aggregated and returned. However, with kd-tree such
spatial partitioning of can be very expensive to construct.
Moreover with new points coming in the spliting points/di-
rections in the global kd-tree might have to be updated often
to maintain fast look-ups.

SG Tree has favorable properties for distributed systems.
First, no two-step construction is needed. The tree can be
grown normally till memory is exhausted, at which point
sub-trees starting from level k can be distributed among
other nodes. The data can be continued to be added after
distribution. Unlike kd-trees, in SG Tree there is no axis
aligned splits that have to be recomputed with new points
coming in. Second, the top-k levels of SG Tree can be
replicated across all nodes, without incurring much syn-
chronization penalty due to Lemma 5 (proof sketch in the
App. D). It says modifications in top-k levels of SG Tree are
rare, and replica would hardly needed to be synchronized.
Thus, every node can process incoming queries and direct it
to appropriate nodes, thereby increasing the throughput as
illustrated in Figure 2.

TerraPattern: A Nearest Neighbor Search Service

Lemma 5. Let us construct SG Tree with n ≥ cT points
sampled from distribution rGMM(c, T) and insert a new
point, then with high probability, the new point will not
create a new node in the first T = o(log n) levels.

3. Experiments
In this section, we present empirical studies comparing SG
Tree with other data structures. These show that SG Tree has
fast construction speed and competitive query time meeting
the needs of TerraPattern service. We have conducted an ex-
tensive comparison with existing software and benchmarks
and include all of the settings (hyperparameters etc) in the
supplementary material for the interested reader.

Datasets To test the above claims, we evaluate on a num-
ber of datasets from UCI repository1 and from the popular
ANN-Benchmark2, as listed in Figure 3 along with their size
(N) and dimensionality (D). These are multivariate datasets
from a varied set of sources meant to provide a broad pic-
ture of performance across different domains. They also
include a mix of Euclidean and Angular distance (1-cosine
similarity) as the natural metric for NN query among the
selected datasets. The datasets come with a train and test
split; we use the train set to build the NN index and test set
for query.

Method We perform our experiments with respect to three
metrics: experience time, construction time and query time.
The most import metric in our application is the “experience
time”, i.e. the total time taken for constructing the index and
performing 1k queries to find the 10-NN in the index for
each query vector. This metric better reflects the experience
of an user who interactively wants to perform some NN
search. The traditional metrics of construction time and time
taken per query are provided in Appendix C. We compare
our multi-threaded implementation of SG Tree in C++14
against following methods, each covering a broad class of
NN search strategy3:

• Cover Tree (Beygelzimer et al., 2006): We use an in-
house C++14 implementation of Cover Tree as no open
source multi-threaded code was available that exactly im-
plemented cover tree.4 Although construction is not par-
allelizable, we tried to parallelize distance computations

1https://archive.ics.uci.edu/ml
2https://github.com/erikbern/

ann-benchmarks
3We provide a rationale for selection of the algorithms for

comparison in Appendix A, e.g. not using Faster Cover Trees
(Izbicki & Shelton, 2015).

4MLPack claims to implement Cover Tree, but they ignore
the global separation property https://github.com/
mlpack/mlpack/blob/master/src/mlpack/core/
tree/cover_tree/cover_tree.hpp#L39

where possible. Also to be fair we added the heuristics
for speed-up. It is an exact search method.
• Random Projection (RP) Tree: We use Annoy5, an highly

optimized implementation of forest of RP trees in C++11.
It is an approximate search method based on space parti-
tioning trees.
• Hierarchical Navigation Small World (HNSW) Graphs

(Malkov & Yashunin, 2016): We use the excellent imple-
mentation of HNSW from NMSLIB6 in C++11. It builds
a proximity graph at multiple resolutions for the points
in index. It is also an approximate search method in the
category of neighborhood based methods.
• Prioritized Dynamic Continuous Indexing (P-DCI) (Li

& Malik, 2017): We use the multi-threaded C code7 re-
leased by the authors. The method is a clever application
of Johnson-Lindenstrauss lemma to query in lower dimen-
sion at a much lower cost. Theoretically, it is an exact
search method with high probability, but in practice can
be considered to be an approximate search method.

For the approximate search methods, we select hyper-
parameters such that Recall@10 ≥ 0.99, i.e. we require
recall to be high as needed by TerraPattern. The final hyper-
parameter used by each method is reported in Appendix B.
Also note that HNSW does not allow modification to the
index, which is undesirable for our application, but we still
include them in comparison.

Setup & Hardware We follow the experimental setup of
the popular ANN-Benchmark . Similar to their protocol, the
queries are not batched as we are interested in online queries.
Instead each query is processed individually, but in parallel
using a thread pool that saturates all the CPU cores. We
run our experiments on an Amazon EC2 c5.18xlarge nodes
having 72 virtual threads per node and 144GB of memory.
In the experiments, all data and calculations are carried out
at single floating-point precision.

Hyperparameter Selection: We tune each hyperparameter
according to the guidelines specified by the packages to
maximize performance. We do so in as scientific a manner
as possible, while ensuring recall@10 ¿ 0.99, as stated in
Line 267. The chosen hyper-parameters are are reported in
Appendix A. We elaborate further below:

• RP-Tree/Annoy has two hyper-parameters: n tree and
search k. Larger values of either will yield more accu-
rate results, but at the expense of higher build & search
time. We do a line search on n tree with default setup
of search k until we hit Recall@10 ¿ 0.99. Then we

5https://github.com/spotify/annoy
6https://github.com/nmslib/nmslib/
7https://github.com/UOMXiaoShuaiShuai/

PDCI

https://archive.ics.uci.edu/ml
https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
 https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/tree/cover_tree/cover_tree.hpp#L39
 https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/tree/cover_tree/cover_tree.hpp#L39
 https://github.com/mlpack/mlpack/blob/master/src/mlpack/core/tree/cover_tree/cover_tree.hpp#L39
https://github.com/spotify/annoy
https://github.com/nmslib/nmslib/
https://github.com/UOMXiaoShuaiShuai/PDCI
https://github.com/UOMXiaoShuaiShuai/PDCI

TerraPattern: A Nearest Neighbor Search Service

10-1 100 101

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

Faces (Euclidean)
N=10K, D=20

10-2 10-1 100 101 102

Time [s]

Artificial (Euclidean)
N=10K, D=40

10-1 100 101 102

Time [s]

Corel (Euclidean)
N=68K, D=32

100 101 102 103

Time [s]

MNIST (Euclidean)
N=70K, D=784

100 101 102 103

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

FMNIST (Euclidean)
N=70K, D=784

100 102 104

Time [s]

TinyImages (Euclidean)
N=100K, D=384

100 101 102 103

Time [s]

CovType (Euclidean)
N=581K, D=55

100 102 104

Time [s]

Twitter (Euclidean)
N=583K, D=78

100 102 104

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

YearPred (Euclidean)
N=515K, D=90

100 102 104

Time [s]

SIFT (Euclidean)
N=1.00M, D=128

101 103 105

Time [s]

GIST (Euclidean)
N=1.00M, D=960

101 102 103 104

Time [s]

NY Times (Angular)
N=300K, D=256

100 102 104

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

GloVe25 (Angular)
N=1.28M, D=25

100 102 104

Time [s]

GloVe50 (Angular)
N=1.28M, D=50

101 103 105

Time [s]

GloVe100 (Angular)
N=1.28M, D=100

102 103 104 105

Time [s]

GloVe200 (Angular)
N=1.28M, D=200

Figure 3. Comparison of SG Tree on numerous benchmark datasets in terms of “experience time”, i.e. total time taken to build the index
and perform 1K queries. Approximate NN methods are marked with * and for such methods the hyper-parameters are chosen to produce
Recall@10 ≥ 0.99 on all the datasets. Non-modifiable data structures are marked with †.

reduce search k to improve runtime till recall does not
degrade.
• HNSW/NMSLIB has multiple hyper-parameters, too

many to search in a systematic fashion. We followed
the guide provided by developers (Page 32, section
4.5.2). The important parameters are M, efCons, and
efSearch. Following their recommendation “One
way to check if the selection of efCons was ok
is to measure a recall for M nearest neighbor search
when efSearch=efCons: if the recall is lower than
0.9, then there is room for improvement.”, we tied

efCons=efSearch and kept increasing them until we
hit Recall@10 > 0.99.
• P-DCI has multiple hyper-parameters, but without any

guidance for selecting them. Thus starting from default,
we tried our best to select parameters for fastest perfor-
mance by making perturbations in each coordinate un-
til they decreased performance. Finally obtained hyper-
parameters are reported in Appendix B.

Observations Overall, Figure 3 is in line with our claim
that SG Tree can enhance user experience for interactive
NN search compared to other methods because it takes

TerraPattern: A Nearest Neighbor Search Service

lowest time for build plus search across multiple datasets of
varying sizes, dimenionality, and distance. Even in terms of
time taken per query (or equivalently queries per second),
SG Tree is quite competitive with other state of the art
methods like HNSW which are not modifiable as can be
seen from Table 2 (in supplementary materials). Another
salient observation is regarding the GloVe datasets, which
are word embeddings of various ambient dimensions 25,
50, 100, 200. Ideally all of these vector collections should
contain similar semantic information and thus posses similar
intrinsic dimension.

Separate Indexing & Query Time: Although, the mixed
indexing and query time are the primary use case for our
needs, we report indexing & querying separately in Table 2
and Table 3, fig. 5 and fig. 6 of Appendix. As can be seen,
SG Tree significantly outperforms existing NN search tools
in construction time and is competitive on query time, thus
well suited for interactive queries. All algorithms are multi-
threaded in both Indexing and query time and use the same
number of threads.

4. TerraPattern Service
Terrapattern provides an open-ended interface for visual
query-by-example, a test bed for our SG Tree nearest neigh-
bor search algorithm. Simply click an interesting spot on
Terrapattern’s map, and it will find other locations that look
similar. Our tool is ideal for locating specialized ’nonbuild-
ing structures’ and other forms of soft infrastructure that
aren’t usually indicated on maps. Terrapattern is a “panoptic
perceptron” that allows a user to perform arbitrary queries-
by-example in satellite imagery. A guest clicks on a “fea-
ture of interest” in a satellite image; the Terrapattern system
presents a batch of the most similar-looking places nearby;
and the guest can then download a list of these locations in
GeoJSON format. An example query is shown in Figure 4
for school bus parking.

We emphasize that Terrapattern is a limited prototype. As of
May 2019, it allows users to search in the greater metropoli-
tan regions of a few major cities: New York City, San Fran-
cisco, Pittsburgh, Berlin etc. Altogether more than 5, 200
square miles are fully searchable. Allowing high-resolution
searches in size of the United States (e.g. 3.8M mi2) is finan-
cially beyond the scope of project. Website: anonymized.

TerraPattern uses a deep convolutional neural network
(DCNN), based on the ResNet architecture (He et al., 2016).
We trained a 34-layer DCNN using hundreds of thousands of
satellite images labeled in OpenStreetMap, teaching the neu-
ral network to predict the category of a place from a satellite
photo. Terrapattern was only possible due to the astonish-
ing crowdsourced mapping effort of the OpenStreetMap
project, which has generously categorized large parts of the

Figure 4. Using Terrapattern we can identify some of Pittsburgh’s
finest school bus depots.

world with its Nominatim taxonomy. We trained our DCNN
using 466 of the Nominatim categories (such as ”airport”,
”marsh”, ”gas station”, ”prison”, ”monument”, ”church”,
etc.), with approximately 1000 satellite images per category.
Our resulting model, which took 5 days to compute on an
nVidia Titan Xp GPU, has a top-5 error rate of 25.4%. In
the process, our network learned which high-level visual
features (and combinations of those features) are important
for the classification of satellite imagery.

After training the model, we removed the final classification
layer of the network and extracted the next-to-last layer of
the DCNN. Using this layer of proto-features (a technique
called “transfer learning”), we computed descriptors for
millions more satellite photos that cover a few metropolitan
regions. When we want to discover places that look similar
to your query, we just have to find places whose descriptors
are similar to those of the tile you selected. To perform
this search in near real time, we use the proposed SG Tree
algorithm for kNN. Some interesting patterns found are
illustrated in Appendix E.

5. Conclusion
We have introduced a new service for fast nearest neighbor
search on satellite images. To do this, we construct a natural
data-structure: SG Tree which has nice theoretical properties
in bounding its depth and construction time. Furthermore,
it provides state of the art results for metric of experience
time (construction + query time) which is very useful for
the purposes of nearest neighbor search. In particular, SG
Tree significantly outperforms existing NN search tools in
construction time, while being competitive in query time
on many real world data-sets and thus is well suited for
interactive queries. We hope that this data-structure along
with its distributed implementation will find wider use in
the community.

TerraPattern has been positively endorsed by a variety of
communities to fulfil a number of different roles, with to-
tal human queries just shy of 10M. We feel we have only
scratched the surface of what is possible both from systems
and algorithms point of view, to a practical service that can
help unlock the potential of satellite images to the world.

anonymized

TerraPattern: A Nearest Neighbor Search Service

References
Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and

Schmidt, L. Practical and optimal lsh for angular distance.
In Advances in Neural Information Processing Systems,
pp. 1225–1233, 2015.

Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R., Katzir,
L., Koenigstein, N., Nice, N., and Paquet, U. Speeding
up the xbox recommender system using a euclidean trans-
formation for inner-product spaces. In Proceedings of
the 8th ACM Conference on Recommender systems, pp.
257–264. ACM, 2014.

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees
for nearest neighbor. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 97–104.
ACM, 2006.

Boyles, L. and Welling, M. The time-marginalized coa-
lescent prior for hierarchical clustering. In Advances in
Neural Information Processing Systems, pp. 2969–2977,
2012.

Broder, A. Z. On the resemblance and containment of
documents. In Compression and complexity of sequences
1997. proceedings, pp. 21–29. IEEE, 1997.

Clarkson, K. L. Nearest neighbor queries in metric spaces.
Discrete & Computational Geometry, 22(1):63–93, 1999.

Coldeway, D. Terrapattern is reverse image search for maps,
powered by a neural network”. Techcrunch, May 2016.
URL https://techcrunch.com/2016/05/25/
terrapattern-is-a-neural-net-powered-reverse-image-search-for-maps/.

Dasgupta, S. and Sinha, K. Randomized partition trees for
exact nearest neighbor search. In Conference on Learning
Theory, pp. 317–337, 2013.

Fu, C., Xiang, C., Wang, C., and Cai, D. Fast approximate
nearest neighbor search with the navigating spreading-out
graph. arXiv preprint arXiv:1707.00143, 2017.

Han, Y., Park, K., Hong, J., Ulamin, N., and Lee, Y.-K.
Distance-constraint k-nearest neighbor searching in mo-
bile sensor networks. Sensors, 15(8):18209–18228, 2015.

Har-Peled, S. and Mendel, M. Fast construction of nets in
low-dimensional metrics and their applications. SIAM
Journal on Computing, 35(5):1148–1184, 2006.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, Q., Feng, J., Zhang, Y., Fang, Q., and Ng, W. Query-
aware locality-sensitive hashing for approximate nearest
neighbor search. Proceedings of the VLDB Endowment,
9(1):1–12, 2015.

Izbicki, M. and Shelton, C. Faster cover trees. In Interna-
tional Conference on Machine Learning, pp. 1162–1170,
2015.

Jahanseir, M. and Sheehy, D. Transforming hierarchical
trees on metric spaces. In CCCG, pp. 107–113, 2016.

Johnson, J., Douze, M., and Jégou, H. Billion-scale similar-
ity search with gpus. arXiv preprint arXiv:1702.08734,
2017.

Karger, D. R. and Ruhl, M. Finding nearest neighbors in
growth-restricted metrics. In Proceedings of the thiry-
fourth annual ACM symposium on Theory of computing,
pp. 741–750. ACM, 2002.

Kiefer, C. and Laub, J. Google Faces. https://
onformative.com/work/google-faces, 2013.
Accessed: 2018-08-15.

Kingman, J. F. On the genealogy of large populations.
Journal of applied probability, 19(A):27–43, 1982a.

Kingman, J. F. C. The coalescent. Stochastic processes and
their applications, 13(3):235–248, 1982b.

Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., and Pro-
topapas, Z. Fast nearest neighbor search in medical image
databases. In Proceedings of the 22th International Con-
ference on Very Large Data Bases, pp. 215–226. Morgan
Kaufmann Publishers Inc., 1996.

Krauthgamer, R. and Lee, J. R. Navigating nets: simple
algorithms for proximity search. In Proceedings of the
fifteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 798–807. Society for Industrial and Applied
Mathematics, 2004.

Li, K. and Malik, J. Fast k-nearest neighbour search via
prioritized dci. In International Conference on Machine
Learning, pp. 2081–2090, 2017.

Li, W., Zhang, Y., Sun, Y., Wang, W., Zhang, W., and Lin,
X. Approximate nearest neighbor search on high dimen-
sional data—experiments, analyses, and improvement
(v1. 0). arXiv preprint arXiv:1610.02455, 2016.

Malkov, Y. A. and Yashunin, D. Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable
small world graphs. arXiv preprint arXiv:1603.09320,
2016.

https://techcrunch.com/2016/05/25/terrapattern-is-a-neural-net-powered-reverse-image-search-for-maps/
https://techcrunch.com/2016/05/25/terrapattern-is-a-neural-net-powered-reverse-image-search-for-maps/
https://onformative.com/work/google-faces
https://onformative.com/work/google-faces

TerraPattern: A Nearest Neighbor Search Service

Muja, M. and Lowe, D. G. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In In VIS-
APP International Conference on Computer Vision The-
ory and Applications, pp. 331–340, 2009.

Ngai, E. W., Hu, Y., Wong, Y., Chen, Y., and Sun, X. The
application of data mining techniques in financial fraud
detection: A classification framework and an academic
review of literature. Decision Support Systems, 50(3):
559–569, 2011.

Patwary, M. M. A., Satish, N. R., Sundaram, N., Liu, J.,
Sadowski, P., Racah, E., Byna, S., Tull, C., Bhimji, W.,
Dubey, P., et al. Panda: Extreme scale parallel k-nearest
neighbor on distributed architectures. In Parallel and Dis-
tributed Processing Symposium, 2016 IEEE International,
pp. 494–503. IEEE, 2016.

Ram, P. and Gray, A. G. Maximum inner-product search us-
ing cone trees. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pp. 931–939. ACM, 2012.

Robinson. The thrill of terrapattern, a new way
to search satellite imagery. The Atlantic, May
2016. URL https://www.theatlantic.
com/technology/archive/2016/05/
the-promise-of-terrapattern-the-visual-search-engine-for-satellite-imagery/
484610/.

Ryan. This website lets you find the hidden sim-
ilarities in big cities. Popular Science, May
2016. URL https://www.popsci.com/
you-can-now-search-google-maps-by-matching-similar-landscapes.

Shin, S. B. and Kim, Y. H. Cloud Face. http://ssbkyh.
com/works/cloud_face, 2014. Accessed: 2018-
08-15.

Singh, S., Ram, F., and De Graef, M. Application of for-
ward models to crystal orientation refinement. Journal of
Applied Crystallography, 50(6):1664–1676, 2017.

Suju, D. A. and Jose, H. Flann: Fast approximate near-
est neighbour search algorithm for elucidating human-
wildlife conflicts in forest areas. In Signal Processing,
Communication and Networking (ICSCN), 2017 Fourth
International Conference on, pp. 1–6. IEEE, 2017.

Teh, Y. W., Daume III, H., and Roy, D. M. Bayesian ag-
glomerative clustering with coalescents. In Advances in
Neural Information Processing Systems, pp. 1473–1480,
2008.

Vikram, S., Hoffman, M. D., and Johnson, M. J. The loracs
prior for vaes: Letting the trees speak for the data. In
AISTATS, volume 89 of Proceedings of Machine Learning
Research, pp. 3292–3301. PMLR, 16–18 Apr 2019.

https://www.theatlantic.com/technology/archive/2016/05/the-promise-of-terrapattern-the-visual-search-engine-for-satellite-imagery/484610/
https://www.theatlantic.com/technology/archive/2016/05/the-promise-of-terrapattern-the-visual-search-engine-for-satellite-imagery/484610/
https://www.theatlantic.com/technology/archive/2016/05/the-promise-of-terrapattern-the-visual-search-engine-for-satellite-imagery/484610/
https://www.theatlantic.com/technology/archive/2016/05/the-promise-of-terrapattern-the-visual-search-engine-for-satellite-imagery/484610/
https://www.popsci.com/you-can-now-search-google-maps-by-matching-similar-landscapes
https://www.popsci.com/you-can-now-search-google-maps-by-matching-similar-landscapes
http://ssbkyh.com/works/cloud_face
http://ssbkyh.com/works/cloud_face

TerraPattern: A Nearest Neighbor Search Service

A. Algorithms for Comparison
Existing algorithms for approximate NN search can be categorized into following classes and we tried to include best
algorithms from each class:

• Locality sensitive hashing (LSH): There are theoretical guarantees on query result quality, efficiency, and memory
requirements. Software packages like FALCONN and QALSH implement variant of this idea. Typically they are
modifiable and fast, but have relatively lower recall. We didn’t find any competitive open source implementation with
high recall. Ann-benchmark remarks that “FALCONN ... [is] the only library I’ve seen that gets decent results using
locality sensitive hashing. Other than that, I haven’t been very impressed by LSH. Graph-based algorithms seem to be
the state of the art, in particular HNSW”. 8. We tried FALCONN but could not achieve very good recall, similar to result
by ANN-Benchmark.9. Alternatively instead of hashing, Li & Malik (2017) cleverly applied Johnson-Lindenstrauss
lemma to project down to multiple lower dimension “buckets” and then query in the bucket in the lower dimensional
space at a much lower cost. This method is called Prioritized Dynamic Continuous Indexing (P-DCI) and we compare
to them.

• Space partitioning: Popular frameworks such as Annoy belong to this class and are used in a commercial recom-
mendation system. These methods are usually not modifiable once the index is constructed, and have a favorable
speed-vs-accuracy tradeoff, but construction can be slow. More theoretically grounded approaches such as Cover Trees
also belong to this class. We use Annoy and original Cover Trees (Beygelzimer et al., 2006) as representatives from
this class for comparison.

• Neighborhood based methods: Methods in this category seldom have theoretical analysis, nevertheless, they are
typically very fast with decent recall empirically. Although, construction can be very costly and the index is often not
modifiable once constructed. The most efficient approximate NN search algorithm according to many open source
benchmarks, HNSW (Malkov & Yashunin, 2016), belongs to this category and we select to compare against it.

import numpy as np
from k e r a s . d a t a s e t s import m n i s t
from s k l e a r n . n e i g h b o r s import N e a r e s t N e i g h b o r s
(xx ,) , (,) = m n i s t . l o a d d a t a ()
xx = xx . r e s h a p e (60000 , −1)
n b r s = N e a r e s t N e i g h b o r s (n n e i g h b o r s =2 ,
a l g o r i t h m = ’ b r u t e ’ , n j o b s = 1) . f i t (xx)
d i s t a n c e s , i n d i c e s = n b r s . k n e i g h b o r s (xx)

Code 1: Simple brute force search on MNIST. Runtime
2.5 min on laptop vs 30 min reported by Faster Cover
Trees (Izbicki & Shelton, 2015).

Note: We do not compare to “Faster Cover Trees”
(Izbicki & Shelton, 2015) as unfortunately, we are un-
able to substantiate several of the results claimed in the
paper and can provide counterexamples to some impor-
tant claims. These claims were “stated without proof”
and without them it is not clear why this algorithm will
perform well. Furthermore, the experimental results in
the paper are poor and is not comparable to simple al-
gorithms (even simple brute-force) on standard datasets
such as MNIST (30min vs 2.5min). This paper and its
approach is not used in any NN benchmarks and hence,
we also choose not to compare to it.

B. Hyper-Parameters Used
We tune each hyperparameter according to the guidelines specified by the packages to maximize performance. We do so in
as scientific a manner as possible, while ensuring recall@10 ¿ 0.99, as stated in Line 267. The chosen hyper-parameters are
are reported in Appendix A. We elaborate further below:

• RP-Tree/Annoy has two hyper-parameters: n tree and search k. Larger values of either will yield more accurate
results, but at the expense of higher build & search time. We do a line search on n tree with default setup of
search k until we hit Recall@10 ¿ 0.99. Then we reduce search k to improve runtime till recall does not degrade.

• HNSW/NMSLIB has multiple hyper-parameters, too many to search in a systematic fashion. We followed the guide
provided by developers (Page 32, section 4.5.2). The important parameters are M, efCons, and efSearch. Following
their recommendation “One way to check if the selection of efCons was ok is to measure a recall for M nearest

8https://erikbern.com/2018/02/15/new-benchmarks-for-approximate-nearest-neighbors.html
9 https://github.com/erikbern/ann-benchmarks/blob/87f9c99/results/glove-100-angular.png

https://erikbern.com/2018/02/15/new-benchmarks-for-approximate-nearest-neighbors.html
https://github.com/erikbern/ann-benchmarks/blob/87f9c99/results/glove-100-angular.png

TerraPattern: A Nearest Neighbor Search Service

neighbor search when efSearch=efCons: if the recall is lower than 0.9, then there is room for improvement.”, we
tied efCons=efSearch and kept increasing them until we hit Recall@10 ¿ 0.99.

• P-DCI has multiple hyper-parameters, but without any guidance for selecting them. Thus starting from default, we tried
our best to select parameters for fastest performance and perturbing each coordinate until they decreased performance.

Final Hyper-Parameters used:

• Cover Tree: It has only one hyper-parameters. Scale was chosen to 1.3 as suggest by Beygelzimer et al. (2006). We use
transformation presented in (2.4) to support angular criterion.

• RPTree/Annoy: It has only two hyper-parameters. We had to select n tree=400 and search k=400k. It inherently
supports angular criterion.

• HNSW/NMSLIB: It has multiple hyper-parameters. Following the guide provided by developers, we had to select
M=100, efCons=2000, efSearch=2000, and all others were default value. It inherently supports angular criterion.

• P-DCI: It has multiple hyper-parameters as well. Following the hints provided by authors, we had to select
num comp indices=10, num simp indices=20, num levels=3, construction field of view=200,
construction prop to retrieve=1, query field of view=400, and query prop to retrieve=1.
We use transformation presented in (2.4) to support angular criterion.

• SG Tree: It has only one hyper-parameter: scale. Similar to cover tree, we chose it to be 1.3.

C. Detailed Comparison of SG Tree
For comparing various algorithms, we report three metrics:

• Construction time: A traditional metric measuring the time taken to build the nearest neighbor search index. Reported
in Table 1 and plotted in Figure 6.

• Average time taken per query: A traditional metric measuring the average time taken to perform 10,000 queries
using unseen points from same dataset to retrieve the 10 nearest neighbors in the index. Reported in Table 2 and plotted
in Figure 5.

• Experience time: The total time taken for constructing the index and performing m queries to find the 10-NN in the
index for each query vector. The results for m = 1, 000 are reported in Table 3 and plotted in Figure 3. The results for
m = 10, 000 are reported in Table 4.

We would like to emphasize that in terms of construction time, SG Tree is an order of magnitude faster than any other
method on all datasets. Even in terms of average query time, SG Tree is competitive to other methods and much faster than
brute force search. This is important for our use case, because artists would want to load their datasets and start exploring
and playing with it immediately, rather than waiting for hours. Also it is much faster than using brute-force search which
has no construction time delay. Thus we report “experience time”, i.e. the total time taken for constructing the index and
performing 1k queries to find the 10-NN in the index for each query vector. This metric better reflects the experience of an
user who interactively wants to perform some NN search.

SG Tree is not designed to construct the index once and perform huge number of queries, rather its designed for more
exploratory purpose. Moreover, SG Tree allows for insertion and deletion of points. This makes it possible to quickly modify
(insert/delete points) the search index. It is useful, for example, when a higher resolution satellite imagery becomes available
for certain region. Most of the baselines do not provide this functionality and would require the expensive reconstruction of
the index from scratch.

TerraPattern: A Nearest Neighbor Search Service

Table 1. Comparison of SG Tree on numerous benchmark datasets in terms of construction time on the task of building NN graph.
Approximate NN methods have been marked with * and for such methods the hyper-parameters are chosen so as to produce Recall@10
≥ 0.99 on all the datasets. Non-modifiable data structures are marked with †.

Dataset N D Construction Time [s]
CoverTree RPTree* HNSW*† P-DCI* SG Tree

E
uc

lid
ea

n

Artificial 10K 40 2.38E+01 2.47E+00 5.82E-01 5.34E-01 2.01E-02
Faces 10K 20 1.01E+00 4.27E+00 1.25E+00 7.00E+00 4.14E-01
Corel 68k 32 8.84E+01 2.07E+01 3.08E+00 8.67E+00 1.65E-01
MNIST 70K 784 9.71E+02 8.41E+01 2.28E+01 9.56E+00 8.41E-01
FMNIST 70K 784 9.01E+02 8.12E+01 1.36E+01 1.03E+01 8.75E-01
TinyImages 100K 384 3.28E+03 8.55E+01 3.52E+01 1.75E+01 9.78E-01
CovType 581K 55 3.10E+01 3.10E+02 3.63E+01 2.84E+02 1.90E+00
Twitter 583K 78 9.74E+03 2.68E+02 4.55E+01 2.95E+02 2.09E+00
YearPred 515K 90 9.75E+03 2.77E+02 1.10E+02 2.51E+02 1.69E+00
SIFT 1.00M 128 8.41E+03 6.64E+02 3.44E+02 8.02E+02 2.56E+00
GIST 1.00M 960 1.94E+04 2.39E+03 2.16E+03 1.01E+03 1.96E+01

A
ng

ul
ar

NYTimes 300K 256 1.25E+03 2.35E+02 3.80E+02 7.54E+01 6.29E+00
GloVe25 1.28M 25 8.47E+03 8.35E+02 3.69E+02 1.03E+03 2.44E+00
GloVe50 1.28M 50 9.46E+03 8.11E+02 8.16E+02 1.05E+03 3.60E+00
GloVe100 1.28M 100 1.15E+04 1.06E+03 1.33E+03 1.10E+03 6.15E+01
GloVe200 1.28M 200 1.85E+04 1.37E+03 2.33E+03 1.14E+03 3.32E+02

Table 2. Comparison of SG Tree on numerous benchmark datasets in terms of average time per query of 10-NN search. Approximate NN
methods have been marked with * and for such methods the hyper-parameters are chosen so as to produce Recall@10 ≥ 0.99 on all the
datasets. Non-modifiable data structures are marked with †.

Dataset N D Avg Time per Query [s]
CoverTree RPTree* HNSW*† P-DCI* SG Tree

E
uc

lid
ea

n

Artificial 10K 40 3.75E-05 6.00E-04 6.30E-05 8.00E-04 1.43E-05
Faces 10K 20 7.05E-06 6.15E-04 3.80E-05 6.80E-04 5.19E-06
Corel 68k 32 1.07E-05 6.10E-04 3.83E-05 1.63E-03 1.34E-06
MNIST 70K 784 1.52E-03 9.38E-04 3.98E-04 1.98E-03 5.56E-04
FMNIST 70K 784 8.02E-04 6.17E-04 2.20E-04 2.03E-03 5.72E-04
TinyImages 100K 384 1.58E-03 7.56E-04 5.49E-04 3.36E-03 4.37E-04
CovType 581K 55 9.54E-06 5.46E-04 5.10E-05 3.89E-03 3.11E-06
Twitter 583K 78 2.29E-04 5.81E-04 7.97E-05 4.45E-03 7.05E-05
YearPred 515K 90 1.06E-03 7.01E-04 2.94E-04 5.21E-03 7.30E-04
SIFT 1.00M 128 3.79E-03 1.22E-03 5.03E-04 6.87E-03 2.80E-03
GIST 1.00M 960 6.66E-02 6.04E-03 3.07E-03 1.60E-02 6.10E-02

A
ng

ul
ar

NYTimes 300K 256 3.92E-03 1.74E-03 2.62E-03 2.92E-03 1.89E-03
GloVe25 1.28M 25 2.24E-03 3.79E-04 3.79E-04 6.36E-03 2.22E-03
GloVe50 1.28M 50 5.79E-03 1.56E-03 8.57E-04 7.21E-03 5.69E-03
GloVe100 1.28M 100 1.05E-02 2.37E-03 1.35E-03 8.66E-03 1.02E-02
GloVe200 1.28M 200 1.77E-02 3.63E-03 2.44E-03 1.08E-02 1.69E-02

TerraPattern: A Nearest Neighbor Search Service

Table 3. Comparison of SG Tree on numerous benchmark datasets in terms of “experience time”, i.e. total time taken to build the index
and perform 1K queries. Approximate NN methods have been marked with * and for such methods the hyper-parameters are chosen so as
to produce Recall@10 ≥ 0.99 on all the datasets. Non-modifiable data structures are marked with †.

Dataset N D Experience Time [s]
CoverTree RPTree* HNSW*† P-DCI* SG Tree

E
uc

lid
ea

n

Artificial 10K 40 2.38E+01 3.07E+00 6.45E-01 1.33E-00 3.44E-02
Faces 10K 20 1.02E+00 4.88E+00 1.29E+00 7.68E+00 4.19E-01
Corel 68k 32 8.84E+01 2.13E+01 3.12E+00 1.03E+01 1.66E-01
MNIST 70K 784 9.73E+02 8.50E+01 2.32E+01 1.15E+01 1.40E+00
FMNIST 70K 784 9.02E+02 8.19E+01 1.39E+01 1.23E+01 1.45E+00
TinyImages 100K 384 3.28E+03 8.63E+01 3.58E+01 2.09E+01 1.42E+00
CovType 581K 55 3.10E+01 3.11E+02 3.63E+01 2.88E+02 1.93E+00
Twitter 583K 78 9.74E+03 2.69E+02 4.56E+01 3.00E+02 2.16E+00
YearPred 515K 90 9.76E+03 2.78E+02 1.10E+02 2.56E+02 2.42E+00
SIFT 1.00M 128 8.41E+03 6.66E+02 3.45E+02 8.09E+02 5.36E+00
GIST 1.00M 960 1.94E+04 2.40E+03 2.16E+03 1.03E+03 8.06E+01

A
ng

ul
ar

NYTimes 300K 256 8.47E+03 2.37E+02 3.82E+02 7.83E+01 8.18E+00
GloVe25 1.28M 25 8.47E+03 8.36E+02 3.70E+02 1.03E+03 4.66E+00
GloVe50 1.28M 50 9.46E+03 8.13E+02 8.17E+02 1.06E+03 9.29E+00
GloVe100 1.28M 100 1.15E+04 1.07E+03 1.33E+03 1.10E+03 7.17E+01
GloVe200 1.28M 200 1.85E+04 1.37E+03 2.33E+03 1.15E+03 3.49E+02

Table 4. Comparison of SG Tree on numerous benchmark datasets in terms of “experience time”, i.e. total time taken to build the index
and perform 10K queries. Approximate NN methods have been marked with * and for such methods the hyper-parameters are chosen so
as to produce Recall@10 ≥ 0.99 on all the datasets. Non-modifiable data structures are marked with †.

Dataset N D Experience Time [s]
CoverTree RPTree* HNSW*† P-DCI* SG Tree

E
uc

lid
ea

n

Artificial 10K 40 2.42E+01 8.47E+00 1.21E+00 8.54E+00 1.63E-01
Faces 10K 20 1.08E+00 1.04E+01 1.63E+00 1.38E+01 4.66E-01
Corel 68k 32 8.85E+01 2.68E+01 3.47E+00 2.49E+01 1.78E-01
MNIST 70K 784 9.86E+02 9.35E+01 2.68E+01 2.94E+01 6.40E+00
FMNIST 70K 784 9.09E+02 8.74E+01 1.58E+01 3.06E+01 6.60E+00
TinyImages 100K 384 3.29E+03 9.31E+01 4.07E+01 5.12E+01 5.35E+00
CovType 581K 55 3.11E+01 3.16E+02 3.68E+01 3.23E+02 2.17E+00
Twitter 583K 78 9.74E+03 2.74E+02 4.63E+01 3.40E+02 2.80E+00
YearPred 515K 90 9.77E+03 2.84E+02 1.13E+02 3.03E+02 8.99E+00
SIFT 1.00M 128 8.45E+03 6.77E+02 3.49E+02 8.70E+02 3.06E+01
GIST 1.00M 960 2.00E+04 2.45E+03 2.19E+03 1.17E+03 6.30E+02

A
ng

ul
ar

NYTimes 300K 256 1.29E+03 2.52E+02 4.06E+02 1.05E+02 2.52E+01
GloVe25 1.28M 25 8.49E+03 8.48E+02 3.73E+02 1.09E+03 2.46E+01
GloVe50 1.28M 50 9.46E+03 8.27E+02 8.24E+02 1.12E+03 6.05E+01
GloVe100 1.28M 100 1.15E+04 1.09E+03 1.34E+03 1.18E+03 1.64E+02
GloVe200 1.28M 200 1.85E+04 1.41E+03 2.35E+03 1.25E+03 5.01E+02

TerraPattern: A Nearest Neighbor Search Service

10-6 10-5 10-4 10-3

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

Faces (Euclidean)
N=10K, D=20

10-5 10-4 10-3

Time [s]

Artificial (Euclidean)
N=10K, D=40

10-6 10-5 10-4 10-3 10-2

Time [s]

Corel (Euclidean)
N=68K, D=32

10-4 10-3 10-2

Time [s]

MNIST (Euclidean)
N=70K, D=784

10-4 10-3 10-2

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

FMNIST (Euclidean)
N=70K, D=784

10-4 10-3 10-2

Time [s]

TinyImages (Euclidean)
N=100K, D=384

10-6 10-5 10-4 10-3 10-2

Time [s]

CovType (Euclidean)
N=581K, D=55

10-5 10-4 10-3 10-2

Time [s]

Twitter (Euclidean)
N=583K, D=78

10-4 10-3 10-2

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

YearPred (Euclidean)
N=515K, D=90

10-4 10-3 10-2

Time [s]

SIFT (Euclidean)
N=1.00M, D=128

10-3 10-2 10-1

Time [s]

GIST (Euclidean)
N=1.00M, D=960

10-3 10-2

Time [s]

NY Times (Angular)
N=300K, D=256

10-4 10-3 10-2

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

GloVe25 (Angular)
N=1.28M, D=25

10-4 10-3 10-2

Time [s]

GloVe50 (Angular)
N=1.28M, D=50

10-3 10-2 10-1

Time [s]

GloVe100 (Angular)
N=1.28M, D=100

10-3 10-2 10-1

Time [s]

GloVe200 (Angular)
N=1.28M, D=200

Figure 5. Comparison of SG Tree on the benchmark datasets in terms of “Query Time”, i.e. average time to perform 10-NN queries.
Approximate NN methods are marked with * and for such methods the hyper-parameters are chosen to produce Recall@10 ≥ 0.99 on all
the datasets. Non-modifiable data structures are marked with †.

TerraPattern: A Nearest Neighbor Search Service

10-1 100 101

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

Faces (Euclidean)
N=10K, D=20

10-2 10-1 100 101 102

Time [s]

Artificial (Euclidean)
N=10K, D=40

10-1 100 101 102

Time [s]

Corel (Euclidean)
N=68K, D=32

10-1 100 101 102 103

Time [s]

MNIST (Euclidean)
N=70K, D=784

10-1 100 101 102 103

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

FMNIST (Euclidean)
N=70K, D=784

10-1 101 103

Time [s]

TinyImages (Euclidean)
N=100K, D=384

100 101 102 103

Time [s]

CovType (Euclidean)
N=581K, D=55

100 102 104

Time [s]

Twitter (Euclidean)
N=583K, D=78

100 102 104

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

YearPred (Euclidean)
N=515K, D=90

100 102 104

Time [s]

SIFT (Euclidean)
N=1.00M, D=128

101 103 105

Time [s]

GIST (Euclidean)
N=1.00M, D=960

100 102 104

Time [s]

NY Times (Angular)
N=300K, D=256

100 102 104

Time [s]

CTree
RPTree*
HNSW*

P-DCI*
SGTree

GloVe25 (Angular)
N=1.28M, D=25

100 102 104

Time [s]

GloVe50 (Angular)
N=1.28M, D=50

101 103 105

Time [s]

GloVe100 (Angular)
N=1.28M, D=100

102 103 104 105

Time [s]

GloVe200 (Angular)
N=1.28M, D=200

Figure 6. Comparison of SG Tree on all benchmark datasets in terms of “Build Time”, i.e. construction time on the task of building NN
graph. Approximate NN methods are marked with * and for such methods the hyper-parameters are chosen to produce Recall@10 ≥ 0.99
on all the datasets. Non-modifiable data structures are marked with †.

TerraPattern: A Nearest Neighbor Search Service

D. More Details from Section 2.5
In this section we provide the more details about our assumptions and proofs for our theoretical results presented in Section
2.5.

D.1. Time-Marginalized Coalescent (TMC) Process

TMC is a popular generative process for modelling hierarchical data (Kingman, 1982b;a; Boyles & Welling, 2012; Teh et al.,
2008; Vikram et al., 2019). TMC defines a distribution over binary trees. In this model we have binary tree together with
time labels associated with each node, i.e. formally we have a triplet (V,E, T) where V is the set of nodes, E is the set of
edges, and the time labels is given by a function τ : V → [0, 1] where we denote tv = τ(v).

Sampling from Time-Marginalized Coalescent occurs in three steps:

1. Sample tree structure: Start with k leaf nodes and add them to V . Pick a pair of nodes uniformly at random, merge
them to create a new node. Add the new node to V and the edges to E. Repeat the process until only one vertex is left,
which is the root of the tree.

2. Sample time labels (using stick-breaking process): Start with a stick of unit length at the root of the binary tree. Set the
time label for root as 0, i.e. troot = 0. At each internal node v, duplicate the current stick into two sticks, assigning one
to each child. Then, sample a Beta random variable βleft-child, βright-child ∼ Beta(γ, 1) for each of the two sticks. This
will be the proportion of the remaining stick attributed to that branch of the tree. Repeat this process until th leaf nodes
are hit. The time label for leaf nodes are set to be 1. To summarise the time labels are sampled as follows:

tv =

0 v = vroot,

1 v ∈ Vleaf,

tπ(v) + βv(1− tπ(v)) v ∈ Vint \ {vroot},
(1)

where βv ∼ Beta(γ, 1) for v ∈ V . These time labels encode a branch length tv−tπ(v) for each edge e = (π(v), v) ∈ E.

3. Sample points for nodes: We start with root at time t = 0 from a place randomly sample from a Normal distribution
zvroot ∼ N (0, I). At each internal node, we split into two independent Wiener processes, which independently evolves
for times tchild − tparent. After this time, we say the child node is reached and the process is repeated with a new
independent Wiener processes being instantiated from current position until all processes reach the leaves (i.e. t = 1).
To summarize, for each vertex v ∈ V a point zv is sampled according to a Normal distribution centered at its parent’s
location with variance proportional to the branch length,

zv|zπ(v) ∼ N (zπ(v), (tv − tπ(v))I), v ∈ V \ {vroot} (2)

4. Sample data points: Data points can be generated in iid fashion. To generate a new point, one simply walks randomly
from the root to the leaf, and then outputs a point according to the Normal distribution whose parameters are determined
by the leaf. In other words, all k leaf nodes can be considered as cluster centers and points being sampled from it.

` ∼ RandomDescent(V,E)

x|z, ` ∼ N (z`, (t` − tπ(`))I)
(3)

Note that if γ > 1, then variance (or stick length sv = tv − tπ(v)) as we go down the tree keeps decreasing exponentially
fast with high probability. One can quickly check this behaviour for a node v at level l in expectation as follows:

E[sv] = E

[
βv

∏
u∈Pv

(1− βu)

]
= E[βv]

∏
u∈Pv

(1− E[βu]) ∵ all βi are independent

=
γ

(1 + γ)l

(4)

Here Pv denotes the set of vertices in the path from root to v (excluding v).

TerraPattern: A Nearest Neighbor Search Service

D.2. Recursive GMM

We consider a variant of TMC process called recursive GMM (rGMM), where the tree is not limited to be binary. Also
instead of assigning variance to the nodes of the tree in a stick-breaking, we assume it decreases by a constant discount factor
at every level. Note that stick-breaking process also exhibits very similar behaviour with high probability. This simplifying
assumption makes the analysis of SG Tree tractable, without much change in richness of the hierarchies being represented
by the model. The rGMM generative process is outlined in Algorithm 3.

We first create a tree structure whose leafs denote the cluster centers. To generate a new point, one simply walks randomly
from the root to the leaf, and then outputs a point according to the Gaussian whose parameters are determined by the leaf.

Algorithm 3 Recursive GMM (γ, c, T)

1: function RGMM(Depth t, Mean µ, Variance σ2)
2: S ← {}
3: if t = 0 then
4: S ← (µ, σ2)
5: else
6: for i = 1→ c do
7: µi ∼ N (µ, σ2)
8: S ← S ∪ {RGMM(c, t− 1, µi, σ

2/(1 + γ))}
9: end for

10: end if
11: return S
12: end function
13: function INITIALIZE
14: PARAMS ← RGMM(T, 0, I)
15: save PARAMS
16: end function
17: function SAMPLE
18: A← PARAMS
19: for t = 1→ T do
20: Pick uniformly at random child a ∼ A
21: A← a
22: end for
23: µ, σ2 ← A
24: x ∼ N (µ, σ2)
25: return x
26: end function

D.3. Proofs of Lemma in Seciton 2.5

Below we provide proof sketches for Lemma 4 and Lemma 5.

Proof Sketch of Lemma 4. The proof contains two parts: The first part is that the SG Tree will contain subtrees that are
highly correlated with each cluster generated by the rGMM bounds. The second part will show that any new query point
will first search the closest pair quickly and will only traverse O(c) nodes at each level before pruning them out.

To show that the SG Tree creates subtrees who are highly correlated, we proceed by induction on the level i. At each i,
we will argue that the sets will be highly correlated with the clusters in rGMM model, if the previous levels were highly
correlated. Let x1, . . . , xc be the centers generated at level i, who have a common parent p. Observe that with high
probability, for all pair of points maxi,j∈[n] ||xi − xj || ≥ c

√
γin. Furthermore all subsequent subchildren will lie within

each
√
γin of xi due to the decrease in the variance in rGMM. We also know that each point in these clusters will contain at

least one point, since we sample n ≥ cT points to insert into the tree, where T = O(log n).

Consider any level l satisfying γl ≥ 2 ·
√

(1 + γ)in. Observe that all the nodes belong to the same cluster at this level.

TerraPattern: A Nearest Neighbor Search Service

We now consider the highest level l where γl ≤ T
√
d. Let c1, . . . , ct be the set of children to the (single) root at this level.

By the local separation property, we have that ||ci − cj || ≥ γl ≥ T
√
d.

When T ≥
√

log n we know that with probability (1 − 1/n), all points lie within T
√
d from the cluster center due to

standard Chernoff bounds. Since all the children at each level are chosen to be at least γl apart from each other, we know
that there is at least one element from each cluster in the set of children.

Due to our assumption on the input order, we know that each of these children will partition the space according to their
Voronoi Partition. Since T ≥ Ω(

√
log n), each node in a cluster is closer to every point in its own cluster and farther from

all the other cluster centers. Therefore, each node will be belong to a child from its own cluster.

Now we show the second point. Let the query q be sampled from one of the centers generated by the rGMM distribution.
WLOG, let us say that µT , σT . Futhremore, let (µi, σi) denote the mean and variance of the ith node on the root to leaf path.

We will show that the query algorithm will find the right cluster with high probability at each level. Once it reaches the
bottom node, then it gets it correct. To process each level takes O(c) time. In particular, we will bound

d(q, µ̃i) ≥
T−1∑
j=i

d(µj , µj+1) + d(q, µj)

We will bound the latter part by the sum of the variances which is geometrically decreasing.

Proof Sketch of 5. Suppose we look at some node p and its children c1, . . . , ct, with associated variances σ1, . . . , σt. We
know that any sample p will lie in a radius of size t

√
σin from the node ci with probability at least O(e−t

2

). Since we
have inserted at least cT points, we expect there to be atleast one point from each cluster in the first log T levels with high
probability. Since there are cT nodes in the top T levels and each has a probability of O(e−t

2

) of failing, we can simply
take a union bound to show that T levels, there will be no new nodes being created.

TerraPattern: A Nearest Neighbor Search Service

E. Terrapattern Results
Some “interesting” example searches patterns are shown in Figure 7. For our purposes, “interesting” features are anthro-
pogenic or natural phenomena that are not only socially or scientifically meaningful, but also visually distinctive–thus
lending themselves ideally to machine recognition. Examples could include things like animal herds, electric stations,
factories, destroyed homes, or sports ground. Many other patterns await discovery. It is important to point out that the
TerraPattern system was not trained on any of the categories shown, but instead recognizes them because of their common
visual features. There are a number of burgeoning, visually consistent, and in many cases worrisome phenomena which
future versions of TerraPattern could be useful in tracking, e.g. concentrated animal feeding operations, uranium mill tailings
deposits, Siberian methane blowholes, which are arising due to global warming, and megafauna poaching. The TerraPattern
project is only a prototype-especially in its scale-and we feel we have only scratched the surface of what is possible.

(a) Electric stations (b) Cracked tarmacs, (c) Solar panels

(d) Cars (e) Baseball fields, (f) Bridges

(g) Golf course sand traps (h) Purple tennis courts (i) Attractive runway markings

Figure 7. Some examples of interesting patterns found by our method. Link to TerraPattern UI for the results anonymized.

F. Related Works
F.1. Nearest Neighbor Search

NN search has been an active area of research in many communities in computer science. We will only mention the works
directly related to this paper as a full survey of this rich area is well beyond the scope of this paper. Clarkson (1999) was
the first to study NN search in high dimensions where he studied points that satisfied a certain sphere packing assumption.
Karger & Ruhl (2002) subsequently introduced the notion of expansion constant and studied data-structures that performed
well under this assumption. Subsequently Krauthgamer & Lee (2004) provided data structure Navigating Nets that had a
strong theoretical properties and worked on metrics with constant doubling dimension. A simpler data-structure Cover Trees

TerraPattern: A Nearest Neighbor Search Service

was proposed by Beygelzimer et al. (2006) which also performed well on metrics with small expansion constants. Har-Peled
& Mendel (2006) came up with Net Trees to address approximate nearest neighbors on doubling metrics. Recently, Jahanseir
& Sheehy (2016) showed that Net Trees captured Cover Trees with a particular set of parameters. Another interesting data
structure with good theoretical properties was given by (Dasgupta & Sinha, 2013) which used the idea of random projections
to quickly narrow down the search size.

Despite significant progress in theoretical NN search, the bulk of highly engineered software used in practice has evolved
tangentially. They primarily focus approximate NN search, which are sufficiently useful for many practical problems, such
as in big machine learning pipelines. The algorithms for approximate NN search can be categorized as:

• Locality sensitive hashing (LSH): It maps a high-dimensional point to a low-dimensional point via a set of appropriately
chosen random projections. There are theoretical guarantees on query result quality, efficiency, and memory requirements.
Software packages like FALCONN (Andoni et al., 2015) and QALSH (Huang et al., 2015) implement variants of this idea.
Typically they are modifiable and fast, but have relatively lower recall.
• Space partitioning: The space is partitioned in a hierarchically manner using a tree data structure. Popular frameworks

such as Annoy and FLANN (Muja & Lowe, 2009) belong to this class and are used in a commercial recommendation
system. These methods are usually not modifiable once the index is constructed, and have a favorable speed-vs-accuracy
tradeoff, but construction can be slow.
• Neighborhood based methods: A proximity graph consisting of neighborhood information for each individual data point

is maintained. At query time heuristics are used to navigate the proximity graph. Methods in this category seldom have
theoretical analysis, nevertheless, the are typically very fast with decent recall empirically. Although, construction can be
very costly and the index is often not modifiable once constructed. The most efficient approximate NN search algorithm
according to many open source benchmarks, HNSW (Malkov & Yashunin, 2016), belongs to this category, albeit HNSW
has no theoretical guarantees.

For a more detailed survey, readers are encouraged to refer to Li et al. (2016). Since none of the existing tools fit our
requirements of a fast, modifiable NN search algorithm with exact or high recall, we develop our own method.

F.2. Satellite Imagery

Access to satellite imagery, especially as it can be interpreted through the lens of machine intelligence, is currently controlled
by a select few: state-level actors and (increasingly) multinational businesses. Once the exclusive domain of top-secret
military surveillance, high-resolution satellite imagery has recently become heavily corporatized in public domain. In this
section, we highlight a few projects which we consider to be powerful and inspirational illustrations of the democratization
of machine intelligence for satellite imagery.

Corporate: At the forefront of this shift of availability of satellite images are companies like Orbital Insight, Remote
Sensing Metrics and Genscape, which apply machine learning algorithms to satellite imagery in order to sell “actionable
intelligence” to hedge funds and other market speculators. For example, in their “US Retail Traffic Index”, RS Metrics
monitors the number of cars in retail parking lots, in order to estimate the quarterly performance of big-box stores before
those results have been released. Similarly, Orbital Insight’s “World Oil Storage Index” consists of daily estimates of the

Figure 8. Left: Parking around shopping malls indicating performance of stores. Right: Oil storage tracking can indicate business
performance of the oil company.

TerraPattern: A Nearest Neighbor Search Service

Figure 9. Left: Identifying illegal propping up of gold mines. Right: Identify illegal logging roads in Amazonian forest.

amount of oil held in 20,000 storage tanks-intelligence derived from the size of shadows on the interiors of tanks with
floating lids.

Environmental: At the forefront of environmental efforts is the non-profit organization, Monitoring of the Andean
Amazon Project (MAAP), which uses satellite imagery and computer vision to analyze the Amazonian rainforest. In some
of their best-known work, supported through the Planet Labs Ambassadors Program, MAAP has successfully detected
illegal gold mines, as well as illegal logging roads, which are key precursors to deforestation. Other environmental initiatives
have used related techniques to, for example, bust illegal fishing operations.

Humanitarian: At the Harvard Humanitarian Initative’s “Signal Program on Human Security and Technology”, a series
of influential projects directed by Nathaniel Raymond has used satellite imaging to investigate war crimes, genocides, and
other atrocities. Raymond is among the most outspoken advocates for the use of geospatial intelligence by human rights
groups and other non-governmental organizations (NGOs). In one project, Raymond and his team used machine learning
techniques to automatically identify Sudanese straw-hut dwellings, known as tukuls, in satellite imagery. Their team’s
tukul-detector was able to successfully distinguish intact tukuls from ones which had been razed–an excellent proxy for
detecting mass killings, in a part of the world where on-the-ground journalism is exceptionally risky.

In another humanitarian project, data scientists from DataKind.org collaborated with members of GiveDirectly, an NGO
which gives microgrants to impoverished people in developing nations. In order to know where to focus their efforts, the
team developed software to analyze the ratio of straw roofs to metal roofs in each of the districts of a Central African country.
This ratio proved to be a good proxy for estimating the relative wealth of each of the districts, for a country otherwise
lacking in census data of this sort.

Wildlife: The combination of satellite imaging and machine vision has also had a major impact on our ability to track
animal populations. For example, one team of scientists were able to track Antarctic penguin populations and take
measurements of their diets by observing their poo from space. Another team of scientists was able to locate and count
families of Southern Right Whales. In another fascinating discovery, Dr. Sabine Begall, a professor of Zoology at the
University of Duisburg-Essen, has discovered that ruminants have a previously undiscovered geomagnetic sense essentially,

Figure 10. Left: Broken straw in satellite image indicates possibility of mass killings. Right: Counting straw vs metal roof ratio can
indicate wealth of the district

TerraPattern: A Nearest Neighbor Search Service

Figure 11. Left: Observing penguin poo from satellite image can track penguin flocks. Right: Detect and track rare species of Southern
Right Whales.

that grazing cows align themselves with the earth’s magnetic field.

Arts: The arts have the power to provide insights of an altogether different sort. A number of artists have employed
various forms of human and/or machine intelligence to the domain of satellite imagery, in order to produce projects that
inform, provoke, entertain, and delight. An excellent example of this is the project “Aerial Bold” by Benedikt Groß and
Joseph Lee, which is a typeface wholly constructed from letterforms found in satellite imagery. Whereas Groß and Lee use a
mixture of crowdsourcing and automated detection, artist Jenny Odell uses a more personalized, curatorial approach in her
Satellite Collections project (2009-2011), in which parking lots, silos, landfills, waste ponds are compiled into typological
collages. Of her work, Odell writes that “The view from a satellite is not a human one, nor is it one we were ever really
meant to see. But it is precisely from this inhuman point of view that we are able to read our own humanity, in all of its tiny,
repetitive marks upon the face of the earth. From this view, the lines that make up basketball courts and the scattered blue
rectangles of swimming pools become like hieroglyphs that say: people were here.”

Figure 12. Left: Letterforms found in satellite imagery. Right: Collages of container yards.

In many of the examples discussed above, researchers developed bespoke visual detectors that were tightly tuned and
customized for specific problems. The techniques used in Terrapattern portend a new form of highly generalized detector
which can be used in searches by relative laypersons. In this new workflow, it is only important that the patterns of interest
are visually consistent enough for algorithmic detection and analysis.

